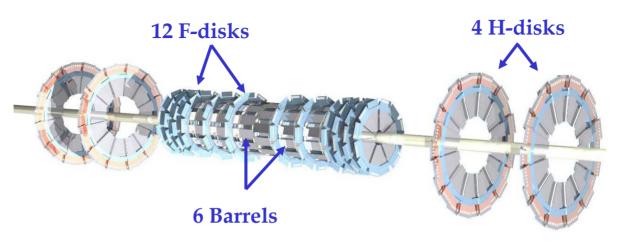
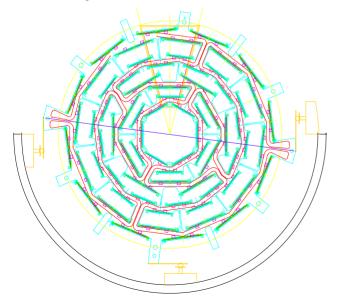
D0 tracking in disks

Alexander Khanov, UR

- ➤ Why disks?
- ➤ D0 silicon tracker
- ➤ Occupancies
- ➤ Tracking issues
- > Performance
- > Conclusions


Why disks?

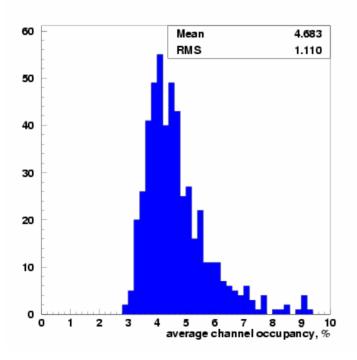
- \triangleright at high θ angles (> 45°) tracking with detectors parallel to the beam axis becomes problematic:
 - ➤ a lot of material
 - > very long clusters on the stereo side
- ➤ want to add detectors with measuring planes at small angles w.r.t. incident tracks
 - > usually use disks perpendicular to the beam axis
 - > other designs are known (e.g. "umbrellas")


D0 tracker

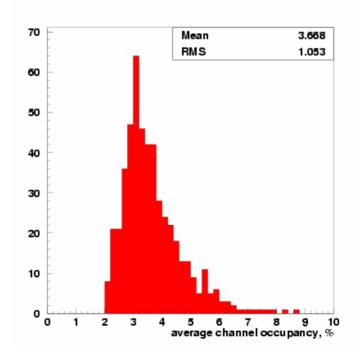
- ➤ D0 vertexing/tracking detector (Silicon Microstrip Tracker, SMT) has some unique features:
 - \triangleright barrel part is short (±38 cm) compared to the z beam spot size (σ =30 cm), so tracking in disks is crucial
 - bisks are partially embedded between barrels, cannot really separate tracking in barrels and disks
 - \triangleright pattern recognition at high $|\eta|$ has to be done entirely in SMT, without any external support

Silicon Microstrip Tracker

Multi-layer barrel cross-section

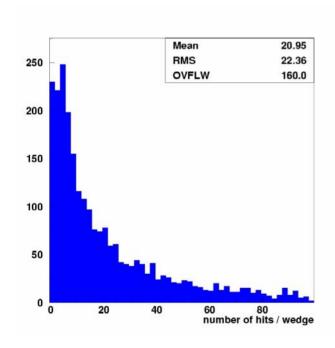


	Barrels	F-disks	H-disks
	Double and single sided	Double	Single
	siligie sided	sided	sided
Stereo angle	0°, 2°, 90°	±15°	±7.5°
Channels	~400K	~250K	~150K
Inner radius	2.7 cm	2.6 cm	9.5 cm
Outer radius	9.4 cm	10.5 cm	26 cm


3m² of silicon

Occupancy in disks

> occupancy in terms of read-out channels is at the level of few per cent, dominated by noise


f-disks, p-side

f-disks, n-side

Occupancy in disks (2)

➤ average occupancy in terms of stereo matched hits is ~20 hits / detector, with long tails

Run 166866

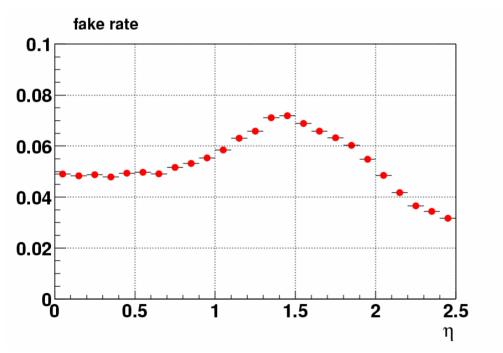
Instantaneous luminosity: 28E30 cm⁻²s⁻¹

Rate to tape: 41 Hz

Strip direction

- ➤ for the pattern recognition, the best option is strips on one side pointing to the beam:
 - \triangleright this is a (z,φ) measurement
 - \triangleright for tracks originating from (0,0), $\varphi = kz$
- ➤ other options do not provide a meaningful measurement just an arbitrary line in space
 - ➤ at least to initialize the tracking, always have to combine two views, and run into combinatorics!
- ➤ for barrels, small stereo angle means just worse z resolution
- ➤ for disks, it affects the pattern recognition have to allow for wrong order of point radii!

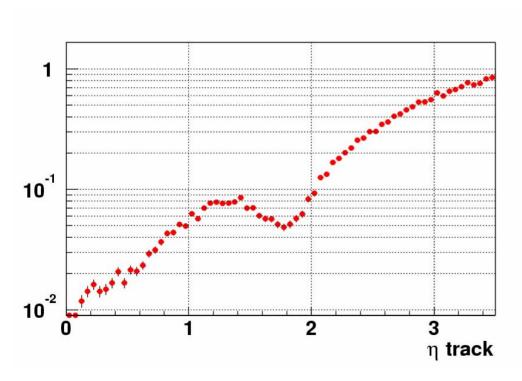
Pattern recognition in disks


- > tracking in barrels is straightforward
 - \triangleright for barrels, (r,φ) and (z,θ) track parameters nicely decouple, allowing for powerful global pattern recognition methods (Hough transform, histogramming approach)
 - \triangleright one can begin with (r,ϕ) tracks and add z later, when the picture is already cleaned up

> it is different for disks

- > 2d disk hits do not have neither precise r nor precise φ measurement, and there are lots of fake hits due to the combinatorics because of a high stereo angle
- ➤ 1d disk hits can only be used at later tracking stages, when the track candidate is already formed

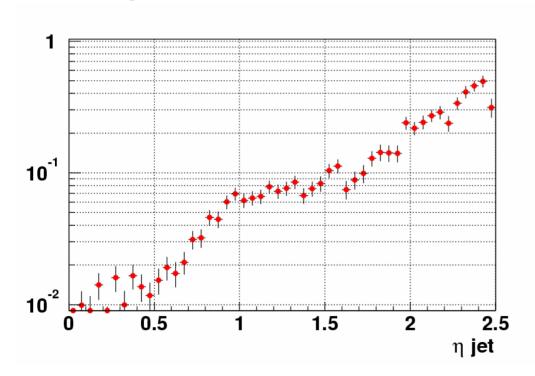
Track fake rate


- > fake rate is a problem since there are so few points
 - \triangleright understand your χ^2
 - > remove tracks with missing layers
 - drop tracks without neighbors in z

shown: fake rate in 40 GeV QCD jets (MC)

Tracking performance

➤ disks are important for reconstructing high quality tracks with at least 2 SMT hits

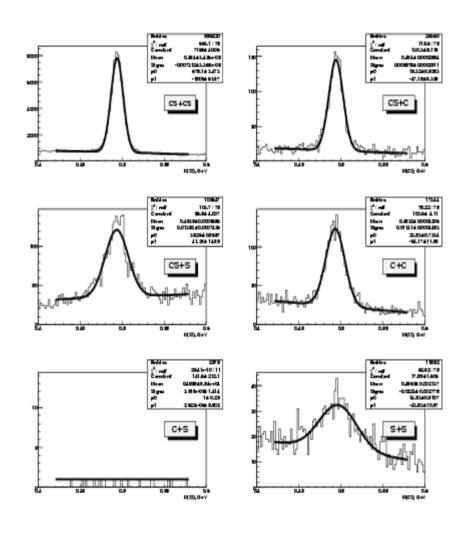


shown: ratio of the number of tracks with ≥2 SMT hits and <2 SMT barrel hits to the total number of tracks with ≥2 SMT hits

Sample: EM QCD (data)

b-tagging using tracks in disks

b-tagging at |η|>1 increases by >7% when using tracks with disk hits (b-tagging algorithms require tracks with ≥2 SMT hits)


shown:
$$(N_b - N_b^{bar}) / N_b$$

 N_b = number of tagged b-jets N_b^{bar} = number of tagged b-jets not using tracks with <2 SMT barrel hits

Sample: W+bbx (MC)

Reconstruction of physical objects

- ➤ Example: K_S made of tracks with both CFT and SMT hits (CS), CFT-only tracks (C) or SMTonly tracks (S) (data)
 - ➤ resolution is ~3 times worse for S+S compared to CS+CS

Conclusions

- > Tracking in disks is possible and useful
- ➤ It is a good idea to design a tracking device having in mind the pattern recognition aspects